

NONDESTRUCTIVE INSPECTION OF COMPOSITES **USING AIR-COUPLED ULTRASOUND**

David K. Hsu, Daniel J. Barnard, John J. Peters Vinay Dayal and Vamshi Kommareddy Center for Nondestructive Evaluation Iowa State University Ames, Iowa

ASNT Spring Meeting 2003 Orlando, FL

i Ň Reflection Coefficients (Energy) Transmission and

o ↓

N N

CFRP : Water = 3:1, CFRP : Air = 10,000: 1 Impedance Ratios:

From Air to Solid:

$\alpha_{\mathbf{r}}$	96.96	66.66
α_t	0.04%	0.01%
	CFRP	Aluminum

$\alpha_{\mathbf{r}}$	25%	20%
α	75%	30%
	CFRP	Aluminum

Ultrasonic Attenuation in Air

5 dB/m at 120 kHz, 45 dB/m at 500 kHz, 160 dB/m at 1 MHz

For 4" propagation distance, reduction of signal amplitude is 5% at 120 kHz, 40% at 500 kHz, and 80% at 1 MHz (not counting diffraction loss)

Resolution of Air-Coupled Scans

reasonable resolution even at sub-megahertz frequencies. The slow speed of sound in air helps to achieve

Wavelength at 120 kHz:

Aluminum	CFRP	Water	Air
2"	1"	1/2"	1/10"

Transmission Coefficient Through a Plate

Name of the second seco

Inspection of Composites with Air-Coupled Ultrasonics

Air-Coupled System from QMI, Inc. UT scanner from SONIX, Inc.

Through transmission C-scan using 120 kHz transducers Scan area 10.5" x 10.5"

Air-coupled Ultrasonic Scan Images

Correlation between internal conditions of composite repair and the Air-Coupled Ultrasonic Transmission C-Scan Image

COLORS: Red & orange-- high transmission

Blue & green—low transmission

Air-Coupled UT Image of CFRP Facesheet with Flaws

CENTER CONTROL

Flaws at different depth do not look alike in this TTU image.

7/16"	3/8	0 5/16	1/4	3/16	1/8
4	8	Ĩ.	a	0	۲
6)	6	0	4)	8	•
Ø	Q	9	%	R4)	9
0	ø	ŋ	5	•	ð
0	49.	9	1	9	ø
E)	¢,	4	(7)	•	9
61	6	81	e		

Transmission Air Scan of Flaws in 16-Ply Laminate

(at 400 kHz with focused receiver)

"Poisson's Bright Spot" in Air Scanned Flaw Images"

സ്

Transmitter & Receiver 120 kHz (no focus)

Transmitter is unfocused, Receiver has a focal length of \sim 1"Transducers are Air-coupled 400 kHz probes.

Region with holes is covered with packing tape to prevent signal saturation in the vicinity of holes. The upper 6 holes had no drilling damage, while the bottom 8 holes had fiber pull-out and delamination.

Amplitude image of transmitted signal

Air-coupled C-scan of Panel With Holes and Edge Features

Upper two flaws on perforated side, lower two flaws on un-perforated side Skin thickness = 0.032", honeycomb thickness = 0.5", cell size $\sim 3/8$ "

Photo of perforated skin on aluminum honeycomb panel

<u>TTU airscan of flaws in aluminum honeycomb</u> Using 120 kHz, 3/4" diameter focused probes with perforated skin

CASR

Transmission airscan of a C/C brake disk

Fiber directions (90°, +/- 33°) of filament wound case are visible

12" x 12" x 1.5"

12" x 12" x 1.25"

THICK COMPOSITE ROCKET CASE Air-Coupled Transmission UT Scan, 120 kHz

Otoscope cones on transmitting and receiving transducer eliminated the need for a sound barrier and made scanning easier.

Transducer Modification for Lamb Wave Scanning

Air Coupled Lamb Wave Scan of Reinforced Composite Plate

Strong Signal

Reduced Signal

amplitude of received Lamb wave

Underlying structure affects

CENTRA FOR FOR

Effect of Ply Orientation on Lamb Wave Amplitude

SUMMARY REMARKS

- Air-coupled UT can be used for inspecting a variety of materials and structures.
- Primary mode of inspection is transmission scan, although one-sided Lamb wave scan is possible. 2.
- Diffraction and interference effects are more easily observed than in water-coupled UT. . ო
- Portable, manual air-coupled UT scan system is currently <u>under development.</u> 4.

